Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
33rd Congress of the International Council of the Aeronautical Sciences, ICAS 2022 ; 9:6542-6552, 2022.
Article in English | Scopus | ID: covidwho-20242586

ABSTRACT

In the aircraft cabin, passengers must share a confined environment with other passengers during boarding, flight, and disembarkation, which poses a risk for virus transmission and requires risk-appropriate mitigation strategies. Spacing between passenger groups during boarding and disembarkation reduces the risk of transmission, and optimized sequencing of passenger groups helps to significantly reduce boarding and disembarkation time. We considered passenger groups to be an important factor in overall operational efficiency. The basic idea of our concept is that the members of a group should not be separated, since they were already traveling as a group before entering the aircraft. However, to comply with COVID-19 regulations, different passenger groups should be separated spatially. For the particular challenge of disembarkation, we assume that passenger groups will be informed directly when they are allowed to leave for disembarkation. Today, cabin lighting could be used for this information process, but in a future digitally connected cabin, passengers could be informed directly via their personal devices. These devices could also be used to check the required distances between passengers. The implementation of optimized group sequencing has the potential to significantly reduce boarding and disembarkation times, taking into account COVID-19 constraints. © 2022 ICAS. All Rights Reserved.

2.
Chinese Journal of Parasitology and Parasitic Diseases ; 39(3):365-369, 2021.
Article in Chinese | EMBASE | ID: covidwho-20237038

ABSTRACT

The spread of COVID-19 has increased the risk of contact transmission between people, and imposes challenges and opportunities for the prevention and control of important parasitic diseases. There may be risks of COVID-19 infection during the implementation of the virus control, including in field investigation and intervention, contacting with fecal samples, or with asymptomatic infected people. Therefore, corresponding prevention and control measures should be taken before and during field investigation, and in sample transportation and detection to prevent the risks effectively. In this paper, the risks and corresponding countermeasures in the above processes are discussed in detail, and the opportunities that COVID-19 brought to the disease control system are also analyzed.Copyright © 2021, National Institute of Parasitic Diseases. All rights reserved.

3.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2321400

ABSTRACT

During the COVID-19 pandemic, essential workers such as waste collection crews continued to provide services in the UK, but due to their small size, maintaining social distancing inside waste collection vehicle cabins is impossible. Ventilation in cabins of 11 vehicles operating in London was assessed by measuring air supply flow rates and carbon dioxide (CO2) in the driver's cabin, a proxy for exhaled breath. The indoor CO2 indicated that air quality in the cabins was mostly good throughout a working day. However, short episodes of high CO2 levels above 1500 ppm did occur, mainly at the beginning of a shift when driving towards the start of their collection routes. This data indicated that the ventilation systems on the vehicles were primarily recirculating air and the fresh air supply made up only 10-20 % of the total airflow. Following recommendations to partly open windows during shifts and to maintain ventilation systems, a second monitoring campaign was carried out, finding on average, an improvement in ventilation on board the vehicles. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

4.
Build Simul ; : 1-14, 2023 May 09.
Article in English | MEDLINE | ID: covidwho-2324511

ABSTRACT

There exist various vertical temperature gradients in different-type buildings. A holistic understanding of the impact of different temperature-stratified indoor environments on infection risk is necessary. In this work, the airborne transmission risk of SARS-CoV-2 in different thermally stratified indoor environments is assessed using our previously developed airborne infection risk model. Results show that the vertical temperature gradients in office building, hospital, classroom, etc. are within the range of -0.34 to 3.26 °C/m. In large space such as coach station, airport terminal, and sport hall, the average temperature gradient ranges within 0.13-2.38 °C/m in occupied zone (0-3 m); in ice rink with special requirements of indoor environment, the temperature gradient is higher than those in the above indoor spaces. The existence of temperature gradients causes multi-peaks of the transmission risk of SARS-CoV-2 with distancing, and our results show that in office, hospital ward and classroom, the second peak of the transmission risk is higher than 10-3 in most contact scenarios, while most being lower than 10-6 in large spaces like coach station and airport. The work is expected to provide some guidance on specific intervention policies in relation to the types of indoor environments. Electronic Supplementary Material: the Appendix is available in the online version of this article at 10.1007/s12273-023-1021-5.

5.
Epidemics ; 43: 100688, 2023 06.
Article in English | MEDLINE | ID: covidwho-2322996

ABSTRACT

We survey 62 users of a university asymptomatic SARS-CoV-2 testing service on details of their activities, protective behaviours and contacts in the 7 days prior to receiving a positive or negative SARS-CoV-2 PCR test result in the period October 2020-March 2021. The resulting data set is novel in capturing very detailed social contact history linked to asymptomatic disease status during a period of significant restriction on social activities. We use this data to explore 3 questions: (i) Did participation in university activities enhance infection risk? (ii) How do contact definitions rank in their ability to explain test outcome during periods of social restrictions? (iii) Do patterns in the protective behaviours help explain discrepancies between the explanatory performance of different contact measures? We classify activities into settings and use Bayesian logistic regression to model test outcome, computing posterior model probabilities to compare the performance of models adopting different contact definitions. Associations between protective behaviours, participant characteristics and setting are explored at the level of individual activities using multiple correspondence analysis (MCA). We find that participation in air travel or non-university work activities was associated with a positive asymptomatic SARS-CoV-2 PCR test, in contrast to participation in research and teaching settings. Intriguingly, logistic regression models with binary measures of contact in a setting performed better than more traditional contact numbers or person contact hours (PCH). The MCA indicates that patterns of protective behaviours vary between setting, in a manner which may help explain the preference for any participation as a contact measure. We conclude that linked PCR testing and social contact data can in principle be used to test the utility of contact definitions, and the investigation of contact definitions in larger linked studies is warranted to ensure contact data can capture environmental and social factors influencing transmission risk.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , COVID-19 Testing , Bayes Theorem , United Kingdom/epidemiology
6.
Journal of Building Performance Simulation ; : 1-20, 2023.
Article in English | Web of Science | ID: covidwho-2311713

ABSTRACT

This study investigates the aerosol transmission in queuing and dining scenarios in canteens and explores the effectiveness of control measures. An improved Wells-Riley equation is adopted to calculate the infection risk. The dilution of exhaled aerosols is difficult in the crowded queuing scenario, where the replacement of queuing positions increases the cross-infection risk. The highest infection risk is 1.16% and 1.08% for the linear-queue and cross-queue condition, respectively. Shortening the queuing duration, increasing the separation distance, and wearing masks can considerably reduce the infection risk. In the dining scenario, the effect of increasing ACH is limited on reducing the local concentration. An exhaust vent installed close to the top of the partition can effectively remove the local high-concentration aerosols. Intermittent occupation of a seat can considerably reduce the transmission risk between the consecutive dinners taking that seat. These findings should contribute to improved control of infectious transmission in canteens.

7.
International Journal of Water Resources Development ; 38(6):928-937, 2022.
Article in English | GIM | ID: covidwho-2273079

ABSTRACT

The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during wastewater treatment leads to concerns about whether this process may represent a focal point for the transmission of COVID-19. An epidemiological analysis, based on a COVID-19 IgG/IgM Rapid Test Cassette, performed on 134 wastewater workers from 59 wastewater treatment plants from the province of Granada (Spain) showed a seroprevalence of 8.95% in IgG for SARS-CoV-2, which is similar to the incidence rate found for the general population of the province (9.6%;95%CI = 7.2-12.8). These findings suggest that current safety measures are sufficient for the protection of workers against SARS-CoV-2.

8.
British Journal of Healthcare Management ; 29(3):60-62, 2023.
Article in English | CINAHL | ID: covidwho-2255347

ABSTRACT

The British Journal of Healthcare Management's editor discusses the potential benefits of community diagnostic centres for patients and the wider NHS, along with key considerations to drive this model forward.

9.
5th International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2022 ; : 637-642, 2022.
Article in English | Scopus | ID: covidwho-2248175

ABSTRACT

The COVID-19 pandemic is not over yet. The Coronavirus Disease 19 Pandemic due to the SARS-CoV-2 virus is spreading very quickly in almost every country in the world because of its human-to-human nature. The first COVID-19 case in Indonesia was detected in Depok, West Java, on March 2, 2020. To deal with this, the government must decide on an efficient policy by observing the atmosphere and situation in each region. In this research, we aim to determine the risk status of COVID-19 transmission in the East Java region using Tsukamoto Fuzzy Inference System. The data used are 38 district data groups consisting of four variables. The input variables are COVID-19 positive cases, suspect cases, and probable cases. The output variable is the risk status of COVID-19 transmission data. The results of this study, the Fuzzy Inference System Tsukamoto method, can be used to determine the risk status of COVID-19 transmission in all areas in East Java with an accuracy value of 95.51%. We implement the model of this research in Banten. The results of model calculations in Banten Province show that the model can be used to determine the zone status of each region in Banten with an accuracy rate above 97%. Therefore, the parameter values for each input and output variable in this study can be used in decision-making in areas that have the same zoning policy. © 2022 IEEE.

10.
Sensors (Basel) ; 23(5)2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2285217

ABSTRACT

A healthy and safe indoor environment is an important part of containing the coronavirus disease 2019 (COVID-19) pandemic. Therefore, this work presents a real-time Internet of things (IoT) software architecture to automatically calculate and visualize a COVID-19 aerosol transmission risk estimation. This risk estimation is based on indoor climate sensor data, such as carbon dioxide (CO2) and temperature, which is fed into Streaming MASSIF, a semantic stream processing platform, to perform the computations. The results are visualized on a dynamic dashboard that automatically suggests appropriate visualizations based on the semantics of the data. To evaluate the complete architecture, the indoor climate during the student examination periods of January 2020 (pre-COVID) and January 2021 (mid-COVID) was analyzed. When compared to each other, we observe that the COVID-19 measures in 2021 resulted in a safer indoor environment.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , Air Pollution, Indoor/analysis , Respiratory Aerosols and Droplets , Software , Temperature
11.
Gastroenterol Clin North Am ; 52(1): 157-172, 2023 03.
Article in English | MEDLINE | ID: covidwho-2282914

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has changed the practice of gastroenterology and how we perform endoscopy. As with any new or emerging pathogen, early in the pandemic, there was limited evidence and understanding of disease transmission, limited testing capability, and resource constraints, especially availability of personal protective equipment (PPE). As the COVID-19 pandemic progressed, enhanced protocols with particular emphasis on assessing the risk status of patients and proper use of PPE have been incorporated into routine patient care. The COVID-19 pandemic has taught us important lessons for the future of gastroenterology and endoscopy.


Subject(s)
COVID-19 , Gastroenterology , Humans , Pandemics , Infection Control/methods , Endoscopy, Gastrointestinal/methods , Gastroenterology/methods
12.
Journal of Aerosol Science ; 167, 2023.
Article in English | Scopus | ID: covidwho-2244972

ABSTRACT

Activities such as singing or playing a wind instrument release respiratory particles into the air that may contain pathogens and thus pose a risk for infection transmission. Here we report measurements of the size distribution, number, and volume concentration of exhaled particles from 31 healthy musicians playing 20 types of wind instruments using aerosol size spectrometry complemented with in-line holography in a strictly controlled cleanroom environment. We find that playing wind instruments carries a lower risk of airborne disease transmission than speaking or singing. We attribute this to the fact that the resonators of wind instruments act as filters for particles >10 µm in diameter, which were found in high abundance right after a brass mouthpiece but very rarely at the instrument bell end. We have also measured the size-dependent filtering properties of different types of filters that can be used as instrument masks. Based on these measurements, we calculated the risk of airborne transmission of SARS-CoV-2 in different near- and far-field scenarios with and without masking and/or distancing. We conclude that in all cases where there is a possibility that the musician is infectious, the only safe measure to prevent airborne transmission of the disease is the use of well-fitting and well-filtering masks for the instrument and the susceptible person. © 2022 The Author(s)

13.
Microorganisms ; 11(2)2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2244890

ABSTRACT

In March 2020, the World Health Organization Department declared the coronavirus (COVID-19) outbreak a global pandemic, as a consequence of its rapid spread on all continents. The COVID-19 pandemic has been not only a health emergency but also a serious general problem as fear of contagion and severe restrictions put economic and social activity on hold in many countries. Considering the close link between human and animal health, COVID-19 might infect wild and companion animals, and spawn dangerous viral mutants that could jump back and pose an ulterior threat to us. The purpose of this review is to provide an overview of the pandemic, with a particular focus on the clinical manifestations in humans and animals, the different diagnosis methods, the potential transmission risks, and their potential direct impact on the human-animal relationship.

14.
Ann Work Expo Health ; 2022 May 18.
Article in English | MEDLINE | ID: covidwho-2245974

ABSTRACT

OBJECTIVES: A COVID-19 Job Exposure Matrix (COVID-19-JEM) has been developed, consisting of four dimensions on transmission, two on mitigation measures, and two on precarious work. This study aims to validate the COVID-19-JEM by (i) comparing risk scores assigned by the COVID-19-JEM with self-reported data, and (ii) estimating the associations between the COVID-19-JEM risk scores and self-reported COVID-19. METHODS: Data from measurements 2 (July 2020, n = 7690) and 4 (March 2021, n = 6794) of the Netherlands Working Conditions Survey-COVID-19 (NWCS-COVID-19) cohort study were used. Responses to questions related to the transmission risks and mitigation measures of Measurement 2 were used to calculate self-reported risk scores. These scores were compared with the COVID-19-JEM attributed risk scores, by assessing the percentage agreement and weighted kappa (κ). Based on Measurement 4, logistic regression analyses were conducted to estimate the associations between all COVID-19-JEM risk scores and self-reported COVID-19 (infection in general and infected at work). RESULTS: The agreement between the COVID-19-JEM and questionnaire-based risk scores was good (κ ≥ 0.70) for most dimensions, except work location (κ = 0.56), and face covering (κ = 0.41). Apart from the precarious work dimensions, higher COVID-19-JEM assigned risk scores had higher odds ratios (ORs; ranging between 1.28 and 1.80) on having had COVID-19. Associations were stronger when the infection were thought to have happened at work (ORs between 2.33 and 11.62). CONCLUSIONS: Generally, the COVID-19-JEM showed a good agreement with self-reported infection risks and infection rates at work. The next step is to validate the COVID-19-JEM with objective data in the Netherlands and beyond.

15.
Environ Sci Pollut Res Int ; 2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-2243086

ABSTRACT

Environmental parameters have a significant impact on the spread of respiratory viral diseases (temperature (T), relative humidity (RH), and air saturation state). T and RH are strongly correlated with viral inactivation in the air, whereas supersaturated air can promote droplet deposition in the respiratory tract. This study introduces a new concept, the dynamic virus deposition ratio (α), that reflects the dynamic changes in viral inactivation and droplet deposition under varying ambient environments. A non-steady-state-modified Wells-Riley model is established to predict the infection risk of shared air space and highlight the high-risk environmental conditions. Findings reveal that a rise in T would significantly reduce the transmission of COVID-19 in the cold season, while the effect is not significant in the hot season. The infection risk under low-T and high-RH conditions, such as the frozen seafood market, is substantially underestimated, which should be taken seriously. The study encourages selected containment measures against high-risk environmental conditions and cross-discipline management in the public health crisis based on meteorology, government, and medical research.

16.
Build Environ ; 225: 109640, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2177022

ABSTRACT

SARS-CoV-2 has been recognized to be airborne transmissible. With the large number of reported positive cases in the community, home quarantine is recommended for the infectors who are not severely ill. However, the risks of household aerosol transmission associated with the quarantine room operating methods are under-explored. We used tracer gas technique to simulate the exhaled virus laden aerosols from a patient under home quarantine situation inside a residential testbed. The Sulphur hexafluoride (SF6) concentration was measured both inside and outside the quarantine room under different operating settings including, air-conditioning and natural ventilation, presence of an exhaust fan, and the air movement generated by ceiling or pedestal fan. We calculated the outside-to-inside SF6 concentration to indicate potential exposure of occupants in the same household. In-room concentration with air-conditioning was 4 times higher than in natural ventilation settings. Exhaust fan operation substantially reduced in-room SF6 concentration and leakage rate in most of the ventilation scenarios, except for natural ventilation setting with ceiling fan. The exception is attributable to the different airflow patterns between ceiling fan (recirculates air vertically) and pedestal fan (moves air horizontally). These airflow variations also led to differences in SF6 concentration at two sampling heights (0.1 m and 1.7 m) and SF6 leakage rates when the quarantine room door was opened momentarily. Use of natural ventilation rather than air-conditioning, and operating exhaust fan when using air-conditioning are recommended to lower exposure risk for home quarantine. A more holistic experiment will be conducted to address the limitations reflected in this study.

17.
Journal of Physics: Conference Series ; 2386(1):012020, 2022.
Article in English | ProQuest Central | ID: covidwho-2160844

ABSTRACT

Starting with the spatial SIR model, this paper gives the strict boundary conditions, and obtains two theorems in the process of infectious disease transmission through theoretical analysis. After that, the partial differential equations are transformed into ordinary differential equations by the method of traveling wave solution, and the solutions of infectious wave velocity and hypergeometric function are further derived. Beside local diffusion operator model, the paper also developed global transmission risk functions as convolution kernels and discovered their properties. The solution of the spatial infectious disease model is visualized by programming, and the influence of parameter changes on the solution is discussed. Finally, some variants of the model in special cases are given. This paper proves that under generalized assumption the three population densities of the spatial SIR model results at the origin cannot take extreme values at the same time, and when the infected density takes extreme values at the origin, the higher-order derivative of the infected density to the space is zero. The hypergeometric function method verifies the solution at infinity of the equations, and the above solution can be used to approximate when the distance from the infection source radius is large. In this paper, the discussion on the impact of the changes of several infectious disease parameters can inspire the methods of epidemic prevention and control.

18.
Energy Build ; 278: 112623, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2095305

ABSTRACT

With increasing energy use and outbreaks of respiratory infectious diseases (such as COVID-19) in buildings, there is a growing interest in creating healthy and energy-efficient indoor environments. A novel heating system named low-temperature radiant floor coupled with intermittent stratum ventilation (LTR-ISV) is proposed in this study. Thermal performance, indoor air quality, energy and exergy performance were investigated and compared with conventional radiant floor heating (CRFH) and conventional radiant floor heating with mixing ventilation (CRFH + MV). The results indicated that LTR-ISV had a more uniform operative temperature distribution and overall thermal sensation, and air mixing was enhanced without generating additional draft sensation. Compared with CRFH and CRFH + MV, the indoor CO2 concentration in LTR-ISV can be reduced by 1355 ppm and 400 ppm, respectively. Airborne transmission risk can also be reduced by 5.35 times. The coefficient of performance for CRFH, CRFH + MV, and LTR-ISV during working hours was 4.2, 2.5, and 3.4, respectively. The lower value of LTR-ISV was due to the high energy usage of the primary air handing unit. In the non-working hours, LTR-ISV was 0.6 and 1.3 higher compared to CRFH and CRFH + MV, respectively. The exergy efficiency of LTR-ISV, CRFH, and CRFH + MV was 81.77 %, 76.43 %, and 64.71 %, respectively. Therefore, the LTR-ISV system can meet the requirements of high indoor air quality and thermal comfort and provides a reference for the energy-saving use of low-grade energy in space heating.

19.
Epidemics ; 41: 100646, 2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2082567

ABSTRACT

Many organizations, including the US Centers for Disease Control and Prevention, have developed risk indexes to help determine community transmission levels for the ongoing COVID-19 pandemic. These risk indexes are largely based on newly reported cases and percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests, which are well-established as biased estimates of COVID-19 transmission. However, transmission risk indexes should accurately and precisely communicate community risks to decision-makers and the public. Therefore, transmission risk indexes would ideally quantify actual, and not just reported, levels of disease prevalence or incidence. Here, we develop a robust data-driven framework for determining and communicating community transmission risk levels using reported cases and test positivity. We use this framework to evaluate the previous CDC community risk level metrics that were proposed as guidelines for determining COVID-19 transmission risk at community level in the US. Using two recently developed data-driven models for COVID-19 transmission in the US to compute community-level prevalence, we show that there is substantial overlap of prevalence between the different community risk levels from the previous CDC guidelines. Using our proposed framework, we redefined the risk levels and their threshold values. We show that these threshold values would have substantially reduced the overlaps of underlying community prevalence between counties/states in different community risk levels between 3/19/2020-9/9/2021. Our study demonstrates how the previous CDC community risk level indexes could have been calibrated to infection prevalence to improve their power to accurately determine levels of COVID-19 transmission in local communities across the US. This method can be used to inform the design of future COVID-19 transmission risk indexes.

20.
Journal of Aerosol Science ; : 106070, 2022.
Article in English | ScienceDirect | ID: covidwho-2031410

ABSTRACT

Activities such as singing or playing a wind instrument release respiratory particles into the air that may contain pathogens and thus pose a risk for infection transmission. Here we report measurements of the size distribution, number, and volume concentration of exhaled particles from 31 healthy musicians playing 20 types of wind instruments using aerosol size spectrometry complemented with in-line holography in a strictly controlled cleanroom environment. We find that playing wind instruments carries a lower risk of airborne disease transmission than speaking or singing. We attribute this to the fact that the resonators of wind instruments act as filters for particles >10µm in diameter, which were found in high abundance right after a brass mouthpiece but very rarely at the instrument bell end. We have also measured the size-dependent filtering properties of different types of filters that can be used as instrument masks. Based on these measurements, we calculated the risk of airborne transmission of SARS-CoV-2 in different near- and far-field scenarios with and without masking and/or distancing. We conclude that in all cases where there is a possibility that the musician is infectious, the only safe measure to prevent airborne transmission of the disease is the use of well-fitting and well-filtering masks for the instrument and the susceptible person.

SELECTION OF CITATIONS
SEARCH DETAIL